Roxana Margine

Marie Curie Fellow
Department of Materials, University of Oxford


  • Ph.D. Physics, Pennsylvania State University (USA), 2007
  • M.S. Physics, University of Bucharest (Romania), 2001

Previous appointments

  • Postdoctoral researcher, University of Oxford (UK), 2009-2010
  • Postdoctoral researcher, University Claude Bernard Lyon (France), 2007-2008

Research interests

  • Phonon mediated superconductivity
  • Carbon nanomaterials
  • Electronic structure methods


16. Size versus electronic factors in transition metal carbides and TCP phase stability, D. G. Pettifor, B. Seiser, E. R. Margine, A. N. Kolmogorov, R. Drautz, accepted Phil.. Mag. Lett. (2012).

15. Phys. Rev. B 87, 024505 (2013) Anisotropic Migdal-Eliashberg theory using Wannier functions, E. R. Margine, and F. Giustino.

14. Phys. Rev. Lett. 109, 075501 (2012), Pressure-driven evolution of the covalent network in CaB6, A. N. Kolmogorov, S. Shah, E. R. Margine, A. K. Kleppe, and A. P. Jeaphcoat.

13. Science 337, 209 (2011), Dislocation-driven deformations in graphene, J. H. Warner, E. R. Margine, M. Mukai, A. W. Robertson, F. Giustino, and A. I. Kirkland.

12. Phys. Rev. B 84, 155120 (2011), Development of orthogonal tight-binding models for Ti-C and Ti-N systems, E. R. Margine, A. N. Kolmogorov, M. Reese, M. Mrovec, C. Elsässer, B. Meyer, R. Drautz, and D. G. Pettifor .

11. Appl. Phys. Lett. 98, 081901 (2011), Possible routes for synthesis of new boron-rich Fe-B and Fe1-xCrxB4 compounds, A. F. Bialon, T. Hammerschmidt, R. Drautz, S. Shah, E. R. Margine, and A. N. Kolmogorov.

10. Phys. Rev. Lett. 105, 217003 (2010), New Superconducting and Semiconducting Fe-B Compounds Predicted with an Ab Initio Evolutionary Search, A. N. Kolmogorov, S. Shah, E. R. Margine, A. F. Bialon, T. Hammerschmidt, R. Drautz.

9. Phys. Status Solidi B 247, 2962 (2010), Conductance of functionalized nanotubes, graphene and nanowires: from ab initio to mesoscopic physics, X. Blase, C. Adessi, B. Biel, A. Lopez-Bezanilla, M.-V. Fernandez-Serra, E. R. Margine, F. Triozon, and S. Roche.

8. Appl. Phys. Lett. 94, 173103 (2009), Resonant spin-filtering in cobalt-decorated nanotubes, X. Blase and E. R. Margine.

7. Appl. Phys. Lett. 93, 192510 (2008), Ab initio study of electron-phonon coupling in boron-doped SiC, E. R. Margine and X. Blase.

6. Nano. Lett. 8, 3315 (2008), Thermal stability of graphene and carbon nanotubes functionalization, E. R. Margine, M.-L. Bocquet, and X. Blase.

5. Phys. Rev. Lett. 99, 196803 (2007), Reciprocal space constraints create real-space anomalies in the doping response of carbon nanotubes, E. R. Margine, P. E. Lammert, and V. H. Crespi.

4. Phys. Rev. B 76, 115436 (2007), Theory of genus reduction in alkali-induced graphitization of nanoporous carbon, E. R. Margine, A. N. Kolmogorov, D. Stojkovic, J. O. Sofo, and V. H. Crespi.

3. Phys. Rev. Lett. 96, 196803 (2006), Universal behavior of nearly free electron states in carbon nanotubes, E. R. Margine, and V. H. Crespi.

2. Science 311, 1583 (2006), Microstructured optical fibers as high-pressure microfluidic reactors, P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding

1. Phys. Rev. Lett. 90, 257403 (2003), Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors, G. Chen, S. Bandow, E. R. Margine, C. Nisoli, A. N. Kolmogorov, V. H. Crespi, R. Gupta, G. Sumanasekera, S. Iijima, and P. C. Eklund.